Szanowna Młodzieży
Temat:
Silniki elektryczne
Kontynuujemy naukę o silnikach elektrycznych. Dzisiaj dowiecie się co to jest komutator i jakie znamy rodzaje silników elektrycznych.
Komutator czyli mechaniczny prostownik prądu
Umożliwia on przekształcenie prądu przemiennego na stały. Zbudowany jest z odizolowanych półpierścieni osadzonych wraz z wirnikiem na tej samej osi. Komutacją nazywamy zespół zjawisk związanych ze zmianą kierunku prądu w zezwoju zwartym przez szczotki. Proces ten zachodzi, gdy zezwój ten jest przełączany z jednej gałęzi twornika do drugiej w związku z obrotem wirnika. W przypadku idealnym, zmiana prądu w cewce w funkcji czasu zależy tylko od rezystancji przejścia pomiędzy szczotką, a sąsiednimi wycinkami komutatora i wyraża się zależnością:
gdzie, T oznacza czas komutacji.
Wiemy już czym jest zjawisko komutacji, ale co ciekawe wyróżniamy trzy rodzaje komutacji, jedna którą właśnie opisałem, oraz dwie kolejne komutację przyśpieszoną, oraz opóźnioną.
Komutacja przyspieszona: to taka, przy której zmiana prądu w cewce następuje już w pierwszej połówce okresu komutacji. Komutacje przyspieszoną otrzymuje się wówczas, gdy zwartym przez szczotkę zwoju będzie indukowana siła elektromotoryczna rotacji. W przypadku silnika zwrot indukowanej siły elektromotorycznej powinien być zgodny ze zwrotem siły indukowanej przez ten biegun, spod którego oczywiście zwój wychodzi.
Komutacja opóźniona: pojawia się, jeśli w połowie okresu komutacji prąd jest większy od zera. Czynnikiem, który dodatkowo opóźnia komutację, jest oddziaływanie twornika. Komutacja opóźniona jest bardzo niekorzystna, gdyż szczotka schodząca z wycinka komutatora w chwili, gdy prąd w cewce nie zdążył osiągnąć wartości prądu w gałęzi, taki stan rzeczy może spowodować pojawienie się łuku elektrycznego, jeżeli łuk ten przedostanie się na dalsze wycinki, to dojdzie do zwarcia komutatora, a jednocześnie do unieruchomienia naszego silnika.
Zauważ że: zła komutacja wywołuje iskrzenie, które może prowadzić do zniszczenia szczotek i komutatora. Komutację uważa się za zadowalającą, gdy szczotki nie iskrzą. Rozróżnia się mechaniczne i elektryczne przyczyny iskrzenia szczotek. Do przyczyn mechanicznych zalicza się przede wszystkim nierównomierność powierzchni, zanieczyszczenie lub nie centryczność komutatora, złe przyleganie szczotek oraz ich drgania. Natomiast do przyczyn elektrycznych zaliczamy gęstość prądu na styku między szczotką, a komutatorem. Podstawą do oceny komutacji jest tzw. krzywa komutacji przedstawiająca przebieg prądu w okresie komutacji.
Najbardziej korzystna jest tzw. komutacja prostoliniowa, w czasie której zmiana prądu w zezwoju zwartym przez szczotkę przebiega liniowo, a przy tym w połowie okresu komutacji prąd jest równy zeru (poniższy rysunek).
Przebieg prądu w okresie komutacji:
- komutacja prostoliniowa
- komutacja opóźniona
- komutacja przyspieszona
- komutacja idealna
Rodzaje silników komutatorowych
Szeregowy: nazwa pochodzi od sposobu połączenia uzwojeń wirnika i stojana. Silnik ten charakteryzuje się bardzo dużą prędkością obrotową w zależności od obciążenia, dlatego też silnik ten NIE MOŻE PRACOWAC BEZ OBCIĄŻENIA!!! Ponieważ jeżeli podłączymy taki silnik bez obciążenia, to cały czas jego prędkość obrotowa będzie rosła, aż do nieskończoności. Skutkiem tego będzie trwałe uszkodzenie silnika! Mimo to znalazł zastosowanie głównie w trakcji elektrycznej (napędy lokomotyw, tramwajów, trolejbusów) oraz w pojazdach mechanicznych (wózki akumulatorowe, rozruszniki samochodów), w napędach dźwigów, wentylatorów itp.
Bocznikowy (inaczej równoległy) jak się już pewnie domyślasz jego uzwojenia są połączone w sposób równoległy. Charakteryzuje się małą podatnością na zmianę prędkości obrotowej na skutek zmiany obciążenia. Stosowany jest głównie w napędach obrabiarek, pomp, dmuchaw, kompresorów;
Szeregowo-bocznikowy posiada uzwojenie wzbudzenia w stojanie połączonym z uzwojeniem twornika w sposób mieszany (część szeregowo, a część równolegle). Charakteryzuje się brakiem głównej wady silnika szeregowego – możliwości jego rozbiegania przy braku obciążenia, a także ma jego zalety – duży moment obrotowy w szerokim zakresie obrotów i zależność prędkości obrotowej od obciążenia. Stosowany jest zazwyczaj jako silniki dużych mocy, tam gdzie występuje ciężki rozruch: do napędu walcarek, pras, dźwigów oraz w napędach okrętowych mechanizmów pokładowych.
Na zakończenie części o silnikach szczotkowych, chciałbym poruszyć jeszcze temat sterowania prędkością obrotową takiego silnika:
- regulacja prędkości poprzez włączenie dodatkowej rezystancji w obwód twornika spowoduje zmniejszenie prędkości obrotowej
- regulacja prędkości poprzez włączenie dodatkowej rezystancji w obwód wzbudzenia (stojana) spowoduje zwiększenie prędkości obrotowej
- regulacja prędkości poprzez zmianę napięcia zasilania (np. za pomocą tyrystorowych regulatorów napięcia)
Podczas rozruchu silnik elektryczny pobiera z sieci prąd kilkakrotnie większy od prądu znamionowego, podczas rozruchu E=0 więc prąd rozruchowy obliczmy zgodnie z prawem Ohma.
Aby zmniejszyć prąd rozruchowy, najczęściej w silnikach dużej mocy stosuje się tzw. Rozrusznik, czyli rezystancje dekadową, która jest wpięta szeregowo w uzwojenie wirnika, składa on się z szeregowo połączonych rezystorów zwieranych włącznikiem odśrodkowych lub za pomocą przekaźnika czasowego.
Podsumowując I część artykułu
- silniki komutatorowe (szczotkowe) mogą być zasilanie zarówno prądem stałym jak i zmiennym pod warunkiem, że prąd twornika Ia oraz prąd stojana If zmienia swój kierunek w tym samym czasie
- warunek ten na pewno jest spełniony w silniku szeregowym
- silnik szeregowy nazywamy również silnikiem uniwersalnym
- w silniku bocznikowym można również zastosować zasilanie prądem zmiennym, należy jednak skompensować znacznie większą indukcyjność stojana za pomocą odpowiednio dobranej pojemności, czyli kondensatora, połączonego szeregowo z uzwojeniem stojana
Silniki bezszczotkowe (BLDC)
Jak się już zapewne domyślasz, ten rodzaj silnika nie będzie zawierał szczotek, a związku z tym także komutatora. Silniki bezszczotkowe, poza ceną, wydają się mieć same zalety, nie mają części, które mogą się zużywać. Dzięki temu silniki te pracują długotrwale i bezobsługowo.
Znaczny wzrost popularności silników BLDC związany jest z wieloma zaletami tego typu maszyn, do których możemy zaliczyć:
prostą budowę silnika,
duży stosunek momentu do masy silnika,
duża sprawność,
prosty układ sterowania,
sterowanie w szerokim zakresie prędkości,
bardzo dokładną regulację prędkości bez dodatkowych kosztów finansowych,
wysoki moment rozruchowy,
niskie koszty obsługi,
brak szczotek (silnik staje się cichy, niezawodny, brak zużywania mechanicznego oraz przewodzącego pyłu)
Do najczęściej wymienianych wad tego silnika należą:
tętnienia momentu elektromagnetycznego,
wysoki koszt magnesów trwałych
konieczność stosowania czujników położenia wału, co w znacznym stopni wpływa na cenę układu napędowego.
Budowa silnika BLDC znacząco różni się od rozwiązań konstrukcyjnych stosowanych w innych maszynach elektrycznych. Wśród jego podstawowych elementów składowych można wyróżnić wirnik oraz stojan. Moment napędowy powstaje w wyniku współdziałania pola magnetycznego wirnika i stojana. W odróżnieniu od tradycyjnych silników wirnik wytwarza stałe w czasie pole magnetyczne pochodzące z magnesów stałych. Pole magnetyczne stojana indukowane jest w uzwojeniach skojarzonych w odpowiednie grupy. Największą zaletą silnika BLDC jest brak konieczności stosowania komutatora, dzięki czemu nie występuje zjawisko komutacji oraz straty energii w wyniku przepływu prądu przez szczotki o stosunkowo dużej rezystancji. Wirnik oraz uzwojenia stojana i sposób ich połączenia poniższy rysunek:
Ruch wirnika możliwy jest dzięki wirującemu polu magnetycznemu stojana. Obroty wirnika są ściśle zależne od częstotliwości zmian pola stojana. W praktyce do sterowania wykorzystuje się układ elektronicznego komutatora a obrót wirnika podzielony jest na sześć faz, w których zasilanie kolejnych uzwojeń przełączane jest w taki sposób aby pole w obwodzie magnetycznym stojana zmieniało swoje położenie o pewien stały kąt wynikający z ilości biegunów.
Układ sterowania realizowany jest zazwyczaj w postaci końcówki mocy opartej na tranzystorach przełączających, których ilość jest uzależniona od liczby uzwojeń stojana. Realizuje on podstawowe funkcje takie jak zmiana prędkości obrotowej, regulacja przyspieszenia, oraz analizowanie informacji o położeniu wirnika pochodzące ze sprzężenia zwrotnego.
Problem przy sterowaniu silnikiem BLDC sprowadza się zazwyczaj do określenia stanu łączników jako funkcji informującej nas o położeniu kątowego wału, czyli mówiąc pokrótce do wyznaczenia chwili przełączenia. Wyznaczenie położenia może się odbywać na podstawie sygnałów pochodzących z czujników magnetycznych tzw. Hallotronów, które znajdują się w szczelinach, rozmieszczone względem siebie o 120 stopni. Zaletą takiego rozwiązania jest fakt, że sygnały te przychodzące z czujników są wykorzystywane, za pomocą prostego układu logicznego do sterowania pracą przełączników.
Jednakże sterowanie to ma także swoje wady, a należy do nich sama obecność zastosowanych sensorów, ponieważ są to delikatne czujniki. Ale czy to oznacza, że silnikami BLDC jest ciężko sterować?
Otóż wcale nie, obok sterowania za pomocą czujników, istnieje również inne. Polega ono na tym, że obliczane są chwile przełączenia łączników na podstawie prądów i napięć pochodzących z uzwojeń naszego silnika. Oczywiście stosuje się kilka metod sterowania, postaram dołożyć się wszelkich starań, abyś mógł je po części poznać.
W pierwszej metodzie wykorzystujemy siłę elektromotoryczną indukowaną w fazie silnika, bardzo łatwo można ją zmierzyć, kiedy silnik jest wyłączony. Można wyznaczyć również czas przejścia tej siły przez zero i po odpowiednim przesunięciu tych sygnałów, a dokładniej o ¼ okresu wykorzystać je do sterowania pracą łączników, niestety metoda ta ma jednak bardzo istotne ograniczenie, ponieważ na postoju indukowana siła elektromotoryczna jest równa zeru, co dyskwalifikuje tę metodę.
W przypadku pytań jestem dostępny na messenger w dowolnym czasie.
Pozdrawiam
Tomasz Wiśniewski